Asymptotic study of supercritical surface Quasi-Geostrophic equation in critical space

نویسندگان

چکیده

In this paper we prove, if θ∈C([0,∞),H2−2α(R2)) is a global solution of supercritical surface Quasi-Geostrophic equation with small initial data, then ‖θ(t)‖H2−2α decays to zero as time goes infinity. Fourier analysis and standard techniques are used.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the critical dissipative quasi-geostrophic equation

The 2D quasi-geostrophic (QG) equation is a two dimensional model of the 3D incompressible Euler equations. When dissipation is included in the model then solutions always exist if the dissipation’s wave number dependence is super-linear. Below this critical power the dissipation appears to be insufficient. For instance, it is not known if the critical dissipative QG equation has global smooth ...

متن کامل

Eventual regularization for the slightly supercritical quasi-geostrophic equation

We prove that weak solutions of a slightly supercritical quasi-geostrophic equation become smooth for large time. We prove it using a De Giorgi type argument using ideas from a recent paper by Caffarelli and Vasseur.

متن کامل

On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces

Article history: Received 5 October 2007 Revised 6 February 2010 Available online 26 February 2010

متن کامل

Blow up for the Generalized Surface Quasi-geostrophic Equation with Supercritical Dissipation

We prove the existence of singularities for the generalized surface quasi-geostrophic (GSQG) equation with supercritical dissipation. Analogous results are obtained for the family of equations interpolating between GSQG and 2D Euler.

متن کامل

Global Wellposedness for a Modified Critical Dissipative Quasi-Geostrophic Equation

In this paper we study the following modified quasi-geostrophic equation ∂tθ + u · ∇θ + ν|D| θ = 0, u = |D|Rθ with ν > 0 and 0 < α < 1. This equation was firstly introduced by Constantin-Iyer-Wu in [10]. Here, we firstly prove the local existence result of smooth solutions by using the classical method, and then through constructing a suitable modulus of continuity we rule out all the possible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2022

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2022.113074